Effect of humidity on the adsorption kinetics of lung surfactant at air-water interfaces.
نویسندگان
چکیده
The in vitro adsorption kinetics of lung surfactant at air-water interfaces is affected by both the composition of the surfactant preparations and the conditions under which the assessment is conducted. Relevant experimental conditions are surfactant concentration, temperature, subphase pH, electrolyte concentration, humidity, and gas composition of the atmosphere exposed to the interface. The effect of humidity on the adsorption kinetics of a therapeutic lung surfactant preparation, bovine lipid extract surfactant (BLES), was studied by measuring the dynamic surface tension (DST). Axisymmetric drop shape analysis (ADSA) was used in conjunction with three different experimental methodologies, i.e., captive bubble (CB), pendant drop (PD), and constrained sessile drop (CSD), to measure the DST. The experimental results obtained from these three methodologies show that for 100% relative humidity (RH) at 37 degrees C the rate of adsorption of BLES at an air-water interface is substantially slower than for low humidity. It is also found that there is a difference in the rate of surface tension decrease measured from the PD and CB/CSD methods. These experimental results agree well with an adsorption model that considers the combined effects of entropic force, electrostatic interaction, and gravity. These findings have implications for the development and evaluation of new formulations for surfactant replacement therapy.
منابع مشابه
Effect of humidity on the stability of lung surfactant films adsorbed at air-water interfaces.
The effect of humidity on the film stability of Bovine Lipid Extract Surfactant (BLES) is studied using the captive bubble method. It is found that adsorbed BLES films show distinctly different stability patterns at two extreme relative humidities (RHs), i.e., bubbles formed by ambient air and by air prehumidified to 100% RH at 37 degrees C. The differences are illustrated by the ability to mai...
متن کاملEnhanced surfactant adsorption via polymer depletion forces: a simple model for reversing surfactant inhibition in acute respiratory distress syndrome.
Lung surfactant adsorption to an air-water interface is strongly inhibited by an energy barrier imposed by the competitive adsorption of albumin and other surface-active serum proteins that are present in the lung during acute respiratory distress syndrome. This reduction in surfactant adsorption results in an increased surface tension in the lung and an increase in the work of breathing. The r...
متن کاملStudies of Surfactant Behaviour and Model Surfaces Relevant to Flotation Deinking
The objective of this work was to investigate the behaviour of some model surfactants used in the deinking process, namely, sodium oleate and two ethoxylated nonionic surfactants (C12E6 and C14E6) as well as to investigate the suitability of various model substrates for mimicking interactions in technical systems. The influence of the adsorption to the air water interface has been measured by...
متن کاملHigh-throughput evaluation of pulmonary surfactant adsorption and surface film formation.
The assessment of new therapeutic strategies to cure surfactant-associated lung disorders would greatly benefit from assay systems allowing routine evaluations of surfactant functions. We present a method to measure surfactant adsorption kinetics into interfacial air-liquid interfaces based on fluorescence microplate readers. The principle of measurement is simple, robust, and reproducible: Wel...
متن کاملKinetics of Surfactant Adsorption at Fluid-Fluid Interfaces
We present a theory for the kinetics of surfactant adsorption at the interface between an aqueous solution and another fluid (air, oil) phase. The model relies on a free-energy formulation. It describes both the diffusive transport of surfactant molecules from the bulk solution to the interface, and the kinetics taking place at the interface itself. When applied to non-ionic surfactant systems,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 21 23 شماره
صفحات -
تاریخ انتشار 2005